RAPID Funded Projects

Sugars-To-Bioproducts Scalable Platform Technology

While tremendous progress has been achieved on creating routes for the production of chemicals and fuels from lignocellulosic biomass, many of these processes are not economic due to the number of process steps required and the requirement for significant inter-stage separations. This project is developing a modularized chemical process intensification technology for the production of bio-para-xylene (biopX) from glucose. This process has received significant attention as a route to meet the high growth rate of pX (CAGR = 7%) and at the same time as we are seeing declining petroleum-based pX production in North America due to the reduction of naphtha cracking. This approach also meets the rising consumer demand for sustainable feedstocks to manufacture materials. This project focuses on the significant reduction of biopX production costs (>20%) using a novel, biphasic, multifunctional, continuous flow microreactor to carry out a cascade of four reactions combined with reactive extraction and potential in-situ generated H2 – all in a single pot – followed by hydrophobicity-driven separation and a second multiphase microreactor. ‘Smart’ organic solvent selection as a common platform for all processes will also be explored to minimize separations. Fast and efficient microwave (MW)-based heating will also be implemented.
Date Approved
Current TRL level
4

Robust Membranes For Black Liquor Concentration

Black liquor (BL), also known as “spent pulping liquor”, is a high-volume byproduct of lignocellulosic biomass pretreatment (i.e., wood pulping by the kraft process). BL is a corrosive, toxic, and complex mixture. About 500 million tons/yr of BL are produced in more than 200 kraft process units worldwide (including 99 in the US, with about 0.2 quads/yr energy spent for BL concentration by multi-effect evaporation). Currently, BL concentration is performed by multi-effect evaporators and is one of the most energy-intensive industrial separation processes. Development of a more efficient BL concentration technology is a high priority for the forest products industry, with membrane technology being a particularly feasible alternative. However, membrane technology has been elusive because of the lack of a long-lived/stable, low-cost, high-performance membrane. This project will develop and demonstrate a bench-scale modular graphene oxide (GO)-based membrane system that substantially improves the energy efficiency of concentrating kraft black liquor (BL) from 15 wt% solids (lignin, organic molecules, and inorganic salts) to 30 wt% solids by removing water (maximum 0.1 wt% solids). The key innovation is the development of BL-stable, scaled-up, GO-based NF and RO membranes supported on macroporous polymeric (polyethersulfone, PES) supports for dewatering black liquor. The challenge is in developing and scaling up low-cost membranes that are long-lived in the corrosive conditions. The recent work on this project promises successful development and scale-up of BL-stable graphene oxide (GO) membranes. It would allow this technology to be quickly integrated into existing Kraft processing facilities to leverage existing assets.
Date Approved
Current TRL level
6

Microwave Catalysis for Process Intensified Modular Production of Value-Added Chemicals from Natural Gas

The rise in US natural gas supplied, tied to challenges/costs associated with natural gas logistics, point to the value of converting natural gas to liquid products. Indirect routes are generally energy inefficient and capital intensive. In contrast, direct non-oxidative natural gas conversion eliminates the syngas production step and required oxygen generation. However, these technologies have not been commercialized because of technical challenges such as low selectivity, coking, heat management, catalyst deactivation and catalyst regeneration. The goal of this project is to develop and demonstrate an innovative modular system intensified with microwave (MW) catalysis, which allows simultaneous production of high-value chemicals (e.g. aromatics) and hydrogen generation via direct non-oxidative natural gas conversion. Specifically, the technical merits consist of synergistically integrating microwave reaction chemistry with novel zeolite catalysts that selectively activate natural gas. The microwave catalysis will enable direct, non-oxidative natural gas conversion under mild conditions with high product yield.
Date Approved
Current TRL level
5

Energy Efficient Separations of Olefins and Paraffins through a membrane

Throughout the petrochemical and refining industry, the separation of olefins and paraffins is generally performed via distillation, a costly and capital intensive method, particularly for light olefins. This project uses a silver-incorporated custom amorphous fluoropolymer membrane to separate olefins and paraffins. Compared to previous attempts using facilitated transport membranes, this membrane has been shown to have very good longevity in laboratory settings and has been tested with reasonably-expected process poisons. The objective of this project is to gain a better understanding of the membrane performance in realistic operating conditions through both real world testing and fundamental modelling of the membrane system. It targets the case of integrating a membrane module in a process to recover propylene from propane in a polymerization reactor purge stream, with the propylene recycled to the reactor.
Date Approved
Current TRL level
4

Modular Conversion of Stranded Ethane to Liquid Fuels

Ethane can represent up to 20 vol.% of shale-gas, exceeding the 10 vol. % allowed in “pipeline-quality” natural gas. Each year, over 210 million barrels (liquid equivalent) of ethane are rejected in the lower 48 states. Upgrading low- to negative-value ethane to easily transportable liquid fuels is a promising solution to this supply glut. The key to this process is development of modular systems that can operate economically at stranded sites. Conventional gas-to-liquids (GTL) technologies face significant challenges such as high capital cost and limited efficiency. This project will develop a fundamentally improved modular ethane-to-liquids (M-ETL) concept. The proposed M-ETL technology uses a modular Chemical Looping-Oxidative Dehydrogenation (CL-ODH) system to convert ethane and natural gas liquids (NGLs) efficiently into olefins (primarily ethylene) via cyclic redox reactions of highly-effective redox catalyst particles. The resulting olefins are converted to gasoline and mid-distillate products via oligomerization. The proposed project will also advance the M-ETL technology to make it ready for full-scale demonstration. A pilot-scale testbed will be designed and constructed for CL-ODH demonstration. The reactor channels of the testbed will be at a scale comparable to those of the proposed modular system.
Date Approved
Current TRL level
4

Advanced Nanocomposite Membrane for Natural Gas Purification

Processing natural gas is the largest industrial application of gas separation membranes. Membranes occupy 10% of the ~$5 billion worldwide annual market for new natural gas separation equipment, with amine absorption accounting for most of the rest. While widely used, amine systems suffer from corrosion, complex process design, and equipment often unsuitable for offshore gas processing platforms. Amine systems are also less efficient than membranes at high CO2 concentrations. Current membrane systems are most commonly based on asymmetric cellulose acetate polymers and suffer from lower CO2/CH4 selectivity and lower fluxes than are needed for more general adoption. Low selectivity means that such systems are often multi-stage, requiring expensive recompression of exhaust gas to extract more hydrocarbon product from it or resulting in greater losses of hydrocarbon product to waste streams. Low fluxes impact the overall size and cost of membrane equipment to treat a given quantify of natural gas. This project will prepare and characterize novel nanocomposite membranes based on recently discovered metal organic framework (MOF) materials and related nanoparticles having outstanding separation properties for removal of acid gases (e.g., CO2) from natural gas. The project aims to demonstrate advanced nanocomposite membranes with much higher flux and selectivity than commercial state-of-the-art membranes when separating CO2 from mixtures with CH4 and mixtures containing aromatic contaminants. Membrane systems based on such membranes would be several times smaller than existing systems to process comparable amounts of gas and lower the hydrocarbon losses, thereby increasing energy efficiency and minimizing emissions/waste.
Date Approved
Current TRL level
4

Efficient Chemicals Production via Chemical Looping

This project will develop chemical looping technology (CLT) into a general process intensification (PI) strategy for modular upgrading of natural gas to commodity chemicals. Nonoxidative upgrading of methane, ethane and propane to alkenes and aromatics is often limited by equilbrium. CLT is an effective PI strategy to circumvent such limitations by either reactive separation or selective oxidation of a subset of products from the reaction mixture to restore the thermodynamic driving force. CLT also allows for efficient heat utilization/management among different reaction steps, thus enhancing the overall energy efficiency of the process. The commercial potential of CLT is underexplored primarily because of the high cost in the design and prototyping of automated continuous systems. This project aims to demonstrate the generality of chemical looping technology (CLT) as a process intensification strategy by advancing chemical looping for methane dehydroaromatization (DHA) and alkane (ethane and propane) dehydrogenation (DH) at yields well in excess of one-pass thermodynamic limits. In each of these chemical looping processes, an increase in per pass conversion, a dramatic simplification of separation, and heat integration are all addressed in a single system, which makes them ideal for being deployed in standard reactors modules at remote natural gas extraction sites.
Date Approved
Current TRL level
3

Intensified Commercial Scale Production of Dispersants

This project will demonstrate conversion of a large-volume chemical commodities process from batch to continuous processing. It is focused to create an order of magnitude reduction in equipment size (and associated capital cost) by transitioning the traditionally batch production of dispersants, specifically succinimide dispersants, into a continuous process. Succinimide dispersants are a relatively large volume family of products that vary by molecular weight, and structure. Application and adoption of intensified, continuous processing principles offers the prospect of revolutionizing their manufacture. The project will look to establish a firm kinetic understanding of the proposed chemistry and to develop reactor modeling tools so that reaction and mass transfer requirements can be balanced while minimizing system volume, ultimately leading to construction and demonstration of an industrial pilot plant. Successful demonstration of a batch to continuous process at previously unrealized scales could open the door for a broader shift to continuous processing in the fine/ specialty chemical industries.
Date Approved
Current TRL level
4

Modular Conversion of Stranded Ethane to Liquid Fuels

Ethane can represent up to 20 vol.% of shale-gas, exceeding the 10 vol. % allowed in “pipeline-quality” natural gas. Each year, over 210 million barrels (liquid equivalent) of ethane are rejected in the lower 48 states. Upgrading low- to negative-value ethane to easily transportable liquid fuels is a promising solution to this supply glut. The key to this process is development of modular systems that can operate economically at stranded sites. Conventional gas-to-liquids (GTL) technologies face significant challenges such as high capital cost and limited efficiency. This project will develop a fundamentally improved modular ethane-to-liquids (M-ETL) concept. The proposed M-ETL technology uses a modular Chemical Looping-Oxidative Dehydrogenation (CL-ODH) system to convert ethane and natural gas liquids (NGLs) efficiently into olefins (primarily ethylene) via cyclic redox reactions of highly-effective redox catalyst particles. The resulting olefins are converted to gasoline and mid-distillate products via oligomerization. The proposed project will also advance the M-ETL technology to make it ready for full-scale demonstration. A pilot-scale testbed will be designed and constructed for CL-ODH demonstration. The reactor channels of the testbed will be at a scale comparable to those of the proposed modular system.
Date Approved
Current TRL level
3

Para-xylene Selective Membrane Reactor

The current approach to p-xylene production includes an isomerization step that gives a nearly equilibrium distribution of mixed xylenes, followed by a separate step to recover p-xylene, then recycling of p-xylene depleted product for further isomerization. This project aims to develop and validate para-xylene ultra-selective zeolite membranes and integrate them with an appropriately designed isomerization catalyst in a membrane reactor to accomplish selective para-xylene production. A successful membrane reactor will increase the yield of para-xylene beyond the limits of equilibrium by selectively removing para-xylene from the reactor as it is produced. Increased productivity and reduced separation energy, capital intensity, and greenhouse gas emissions are the key drivers for developing such an approach. Recent breakthroughs introduced by the University of Minnesota for the synthesis of zeolite membranes using ultrathin zeolite crystals (2-dimensional zeolites and zeolite nanosheets) enabled unprecedented mixture separation factors for para-xylene over its isomers (up to 10,000). This ultra-selective performance has been validated by measurements at ExxonMobil Research and Engineering Company and membranes are currently being tested at temperatures, compositions and pressures relevant to membrane reactor operation.
Date Approved
Current TRL level
3