A significant portion of commodity products are manufactured in large facilities that operate at steady state. In many ways, the traditional chemical industry has reached a plateau in terms of productivity and energy efficiency in such facilities. Improvements based on existing technologies and unit operations are mostly incremental and unable to address fundamental transport limitations that drive process efficiency. Process intensification, largely based on reducing transport and transfer limitations, has the potential to take bulk and specialty chemical production to new levels of economic efficiency. However, process intensification has thus far largely focused on the redesign of process hardware, requiring significant capital investments to realize benefits. This project looks to use modeling and optimization to define PI opportunities in existing hardware. In particular, it takes a general look at dynamically forcing a process to take advantage of non-linear systems responses. In certain cases, this mode of operation can deliver significant improvements in performance. The goal of the project is to provide a general theoretical framework for dynamic intensification, as well as using divided wall column operation as a test case to practice dynamic intensification at the pilot scale.